Monostable Multivibrator

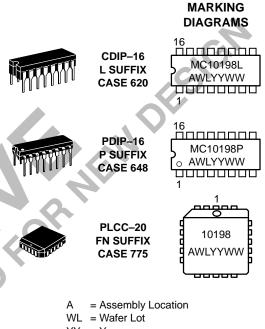
The MC10198 is a retriggerable monostable multivibrator. Two enable inputs permit triggering on any combination of positive or negative edges as shown in the accompanying table. The trigger input is buffered by Schmitt triggers making it insensitive to input rise and fall times.

The pulse width is controlled by an external capacitor and resistor. The resistor sets a current which is the linear discharge rate of the capacitor. Also, the pulse width can be controlled by an external current source or voltage (see applications information).

For high-speed response with minimum delay, a hi-speed input is also provided. This input bypasses the internal Schmitt triggers and the output responds within 2 nanoseconds typically.

Output logic and threshold levels are standard MECL 10,000. Test conditions are per Table 2. Each "Precondition" referred to in Table 2 is per the sequence of Table 1.

tset


thold

- $P_D = 415 \text{ mW typ/pkg}$ (No Load)
- $t_{pd} = 4.0$ ns typ Trigger Input to Q
- 2.0 ns typ Hi-Speed Input to Q •
- Min Timing Pulse Width **PW**_{Omin}
- Max Timing Pulse Width **PWOmax** PWT
- Min Trigger Pulse Width • Min Hi–Speed PW_{HS}
- Trigger Pulse Width
- Enable Setup Time
- Enable Hold Time

ON Semiconductor

http://onsemi.com

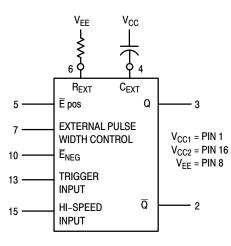
- YY = Year
- WW = Work Week

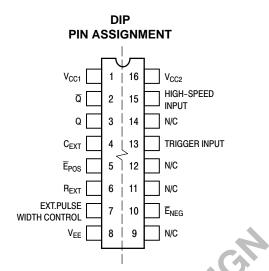
ORDERING INFORMATION

Device	Package	Shipping
MC10198L	CDIP-16	25 Units / Rail
MC10198P	PDIP-16	25 Units / Rail
MC10198FN	PLCC-20	46 Units / Rail

10 ns typ¹

>10 ms typ

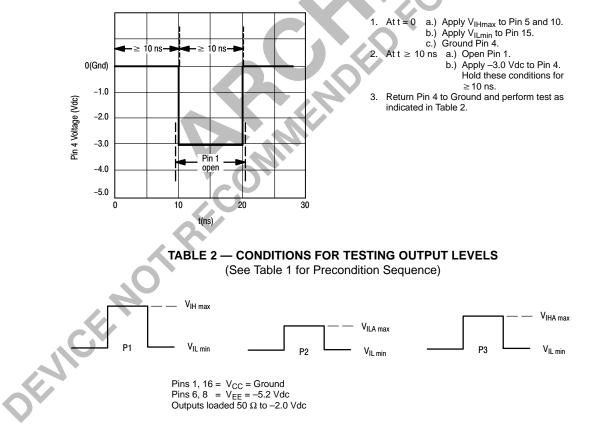

2.0 ns typ


3.0 ns typ

1.0 ns typ

1.0 ns typ

LOGIC DIAGRAM


Pin assignment is for Dual–in–Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ME

TRUTH	TABLE
-------	-------

INF	UT	OUTPUT
E _{Pos}	E _{Neg}	
L	L	Triggers on both positive & negative input slopes
L	Н	Triggers on positive input slope
н	L	Triggers on negative input slope
н	Н	Trigger is disabled

VOH3 PreconditionP1 VIL min P1VOHA3 PreconditionVILA mVoL3 VoLP1P1PreconditionVoLA3 VoLAPreconditionVoHA2 VOHAVILA max VIHA minVOLA2 VOLAPreconditionVOHA2 VOHAVIL min P3VILA max VOLAVOLA2 VOLAVOHA2 VOHAVIL min P3PreconditionVOLA2 VOLAVOHA2 VOHAP2 VOLAP2 VOLAVOLAVIH m VOLAVIH m VOLAVOHA2 VOHAVIH max VOHAP2 VOLAVOLAVIH min VOLAVIH m VIH m VOLAVIH min VIH m VIH mVOHA2 VOLAVIH max VIH maxP2 VOLAVOLAVIH min VIH m VIH m VOLAVIH min VIH m VIH mVOHA3 VIH maxP3VOLA2 VIH maxVIH m VIH m VIH mVOHA3 VIH maxP3VOLA2 VIH maxVIH m VIH m	Precondition		Conditions	r			n Conditio
VOH 2 VIL min VIL min P1 VOH 3 VILA 3 VILA 1 VoL 3 VIL min P1 VIL min Precondition VOLA 3 VILA nax VOLA 2 Precondition VOLA 3 VOLA 2 Precondition VOLA 3 VOLA 2 Precondition VOLA 3 VIH min VIH min VOLA 3 VIH min VIH min <td< th=""><th></th><th>5 10</th><th>13</th><th>15</th><th>Test P.U.</th><th>T. 5</th><th>10</th></td<>		5 10	13	15	Test P.U.	T. 5	10
V _{OHA} 3 V _{IH max} P1 V _{OLA} 2 V _{IH max} VILA n	$\begin{array}{c c} V_{OH} & 3 \\ \hline Precondition \\ \hline V_{OL} & 3 \\ \hline V_{OL} & 2 \\ \hline Precondition \\ \hline V_{OHA} & 2 \\ \hline V_{OHA} & 3 \\ \hline Precondition \\ \hline V_{OHA} & 2 \\ \hline V_{OHA} & 3 \\ \hline Precondition \\ \hline V_{OHA} & 2 \\ \hline V_{OHA} & 3 \\ \hline Precondition \\ \hline V_{OHA} & 2 \\ \hline V_{OHA} & 3 \\ \hline Precondition \\ \hline V_{OHA} & 2 \\ \hline V_{OHA} & 3 \\ \hline Precondition \\ \hline V_{OHA} & 3 \\ \hline Precondition \\ \hline \end{array}$	V _{IH ma}	P1 V _{IL min} P1 V _{IL min} P3 P2 P3 ax P2 P3 ax P2 P3		$\begin{array}{c c} V_{OHA} & 2 \\ V_{OHA} & 3 \\ Precondition \\ V_{OLA} & 3 \\ V_{OLA} & 2 \\ Precondition \\ V_{OLA} & 2 \\ V_{OLA} & 3 \\ Precondition \\ V_{OLA} & 3 \\ V_{OLA} & 2 \\ Precondition \\ V_{OLA} & 3 \\ V_{OLA} & 2 \\ Precondition \\ V_{OLA} & 3 \\ V_{OLA} & 2 \\ Precondition \\ V_{OLA} & 3 \\ V_{OLA} & 2 \\ Precondition \\ V_{OLA} & 3 \\ V_{OLA} & 2 \\ Precondition \\ Precondition \\ V_{OLA} & 2 \\ Precondition \\ V_{OL} & 2 \\ P$	V _{ILA max}	VIHA mir VILA max VIH max VIH max VIH max
V _{OHA} 2 V _{OHA} 3 V _{IH max} P1 V _{IH max} P1 V _{ILA} 3 V _{ILA} 3 V _{IH max} V _{IH max} V _{IHA} V _{ILA} 1	V _{OHA} 3		*^		V _{OLA} 2		
	/ _{OHA} 2				V _{OLA} 3	V _{IH max}	VIHA mir
SEMIC					NO		

		Piı			
Test	P.U.T.	5	10	13	15
Precond	lition				
V _{OHA}	2		VIHA min	P1	
V _{OHA}	3		V _{ILA max}	P1	
Preconc	lition				
V _{OLA}	3				V _{ILA max}
V _{OLA}	2				V _{IHA min}
Precond	lition				
V _{OLA}	2			V _{IL min}	
V _{OLA}				V _{IL min}	
Precond					
V _{OLA}	3			P2	
VOLA	2			P3	
Precond	lition				
V _{OLA}	3		V _{IH max}	P2	
V _{OLA}	2		V _{IH max}	P3	
Preconc	lition				
V _{OLA}	3	V _{IHA min}	V _{IH max}	P1	
V _{OLA}	2	V _{ILA max}	V _{IH max}	P1	
Precond	lition				
V _{OLA}	3	V _{IH max}	V _{IHA min}	P1	
V _{OLA}	2	V _{IH max}	V _{ILA max}	P1	

ELECTRICAL CHARACTERISTICS

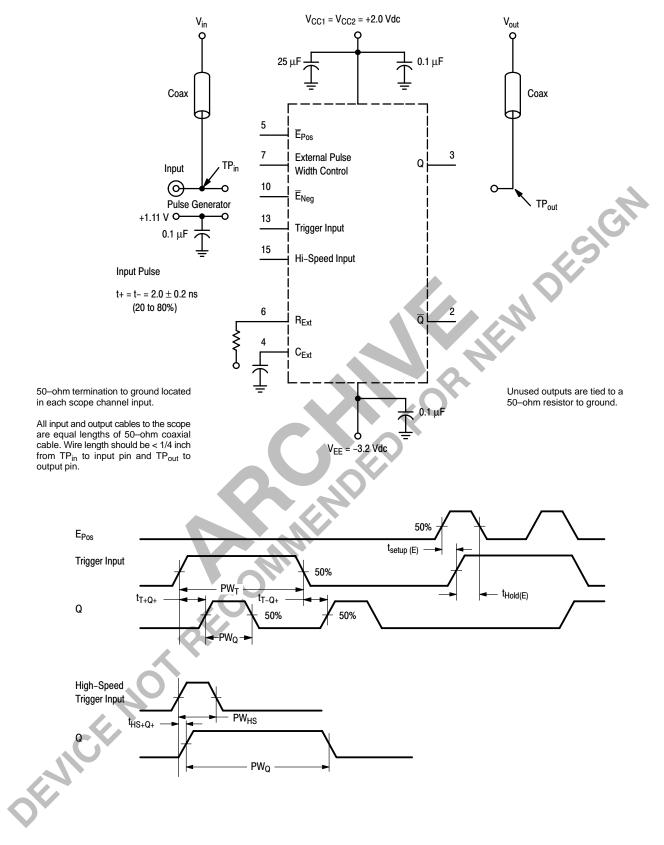
			Test Limits							
		Pin Under	-30)°C		+25°C		+85	5°C	1
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	Ι _Ε	8		110		80	100		110	mAdc
Input Current	l _{inH}	5, 10 13 15		415 350 560			260 220 350		260 220 350	μAdc
	I _{inL}	5	0.5		0.5			0.3		μAdc
Output Voltage Logic 1	V _{OH}	2 3	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc
Output Voltage Logic 0	V _{OL}	2 3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc
Threshold Voltage Logic 1	V _{OHA}	2 3	-1.080 -1.080		-0.980 -0.980			-0.910 -0.910	C	Vdc
Threshold Voltage Logic 0	V _{OLA}	2 3		-1.655 -1.655			-1.630 -1.630		-1.595 -1.595	Vdc
Switching Times (50 Ω Load)								O		
Trigger Input	t _{T+Q+} t _{T–Q+}	3 3	2.5 2.5	6.5 6.5	2.5 2.5	4.0 4.0	5.5 5.5	2.5 2.5	6.5 6.5	ns
High Speed Trigger Input	t _{HS+Q+}	3	1.5	3.2	1.5	2.0	2.8	1.5	3.2	ns
Minimum Timing Pulse Width	PW_{Qmin}	3				10.0				ns
Maximum Timing Pulse Width	PW _{Qmax}	3				>10	•			ms
Min Trigger Pulse Width	PW _T	3				2.0				ns
Min Hi–Spd Trig Pulse Width	PW _{HS}	3				3.0				ns
Rise Time (20 to 80%)		3	1.5	4.0	1.5		3.5	1.5	4.0	ns
Fall Time (20 to 80%)		3	1.5	4.0	1.5		3.5	1.5	4.0	ns
Enable Setup Time	t _{setup} (E)	3				1.0				ns
Enable Hold Time	t _{hold} (E)	3				1.0				ns

1. The monostable is in the timing mode at the time of this test.2. $C_{EXT} = 0$ (Pin 4 Open); $R_{EXT} = 0$ (Pin 6 tied to V_{EE}).3. $C_{EXT} = 10\mu F$ (Pin); $R_{EXT} = 2.7k$ (Pin 6).

- Lmin

ELECTRICAL CHARACTERISTICS (continued)

				TEST VOLTAGE VALUES (Volts)					
		@ Test Ten	nperature	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	
			–30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
			+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
			Pin	TEST V	OLTAGE AP	PLIED TO P	INS LISTED	BELOW	
Characteri	istic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	(V _{CC}) Gnd
Power Supply Drain C	Current	Ι _Ε	8					6, 8	1, 4, 16
Input Current		l _{inH}	5, 10 13 15	5,10 13 15				6, 8 6, 8 6, 8	1, 4, 16 1, 4, 16 1, 4, 16
		l _{inL}	5		5			6, 8	1, 4, 16
Output Voltage	Logic 1	V _{OH}	2 3	13 (4.)	13			6, 8 6, 8	1, 4, 16 1, 4, 16
Output Voltage	Logic 0	V _{OL}	2 3	13 (4.)	13			6, 8 6, 8	1, 4, 16 1, 4, 16
Threshold Voltage	Logic 1	V _{OHA}	2 3			15	15	6, 8 6, 8	1, 16, 4 1, 16, 4
Threshold Voltage	Logic 0	V _{OLA}	2 3			15	15	6, 8 6, 8	1, 16, 4 1, 16, 4
Switching Times	(50 Ω Load)			+1.11V		Pulse In	Pulse Out	–3.2 V	+2.0 V
Trigger Input		t _{T+Q+} t _{T−Q+}	3 3	10 5		13 13	3 3	6, 8 6, 8	1, 16, 4 1, 16, 4
High Speed Trigger Ir	nput	t _{HS+Q+}	3		\mathbf{P}	15	3	6, 8	1, 16, 4
Minimum Timing Puls	e Width	PW _{Qmin}	3			P	Note 2.	6, 8	1, 16, 4
Maximum Timing Puls	se Width	PW _{Qmax}	3				Note 3.	6, 8	1, 16, 4
Minimum Trigger Puls	se Width	PWT	3			13	3	6, 8	1, 16, 4
Minimum Hi–Spd Trig Width	iger Pulse	PW _{HS}	3		r	15	3	6, 8	1, 16, 4
Rise Time	(20 to 80%)		3					6, 8	1, 16, 4
Fall Time	(20 to 80%)		3					6, 8	1, 16, 4
Enable Setup Time		t _{setup} (E)	3			5	3	6, 8	1, 16, 4
Enable Hold Time		t _{hold} (E)	3			5	3	6, 8	1, 16, 4


1. The monostable is in the timing mode at the time of this test.

2. $C_{EXT} = 0$ (Pin 4 Open); $R_{EXT} = 0$ (Pin 6 tied to V_{EE}). 3. $C_{EXT} = 10\mu F$ (Pin); $R_{EXT} = 2.7k$ (Pin 6).

VIHmax 4. **P1** VILmin

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

APPLICATIONS INFORMATION

Circuit Operation:

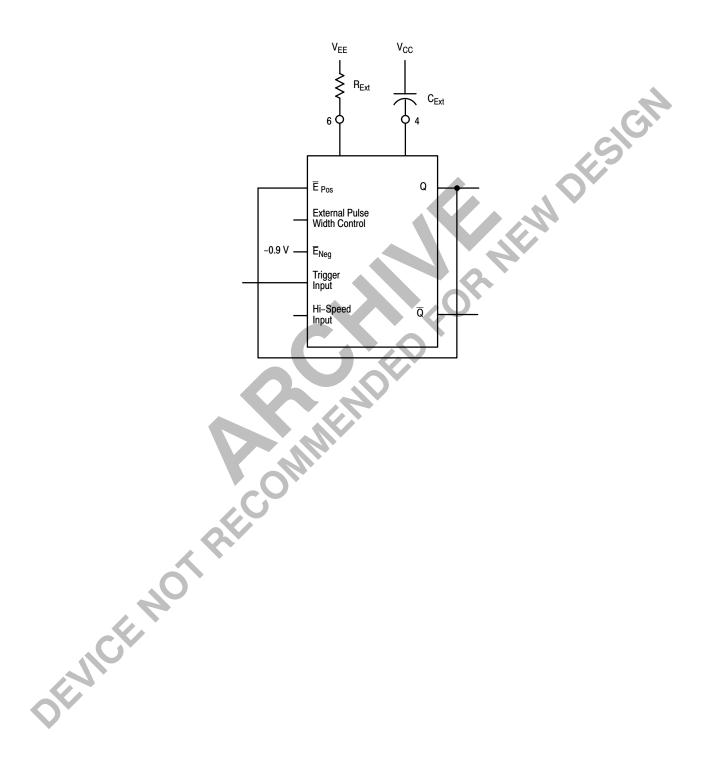
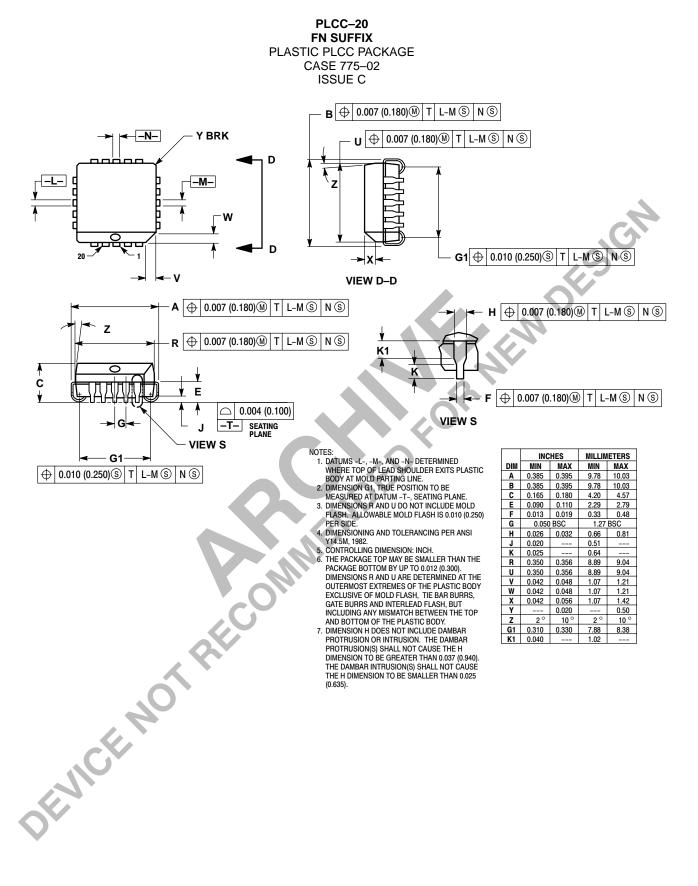
1. PULSE WIDTH TIMING D The pulse width is determined by the external resistor and capacitor. The MC10198 also has an internal resistor (nominally 284 ohms) that can be used in series will right the external pulse width control, is a constant voltage node (±3.60 V nominally). A resistance connected in series from this node to V_{EE} sets a constant timing current This current determines the discharge rate of the capacitor:

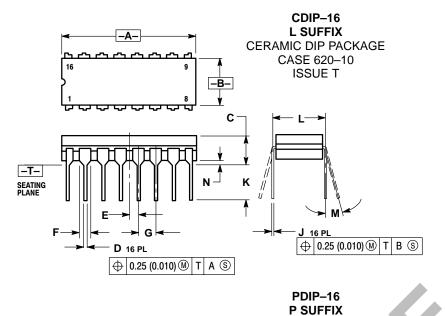
where

DT = pulse width DV = 1.9 V change in capacitor voltage

disër disër hornitur hornitur

5. The MC10198 can be made non-retriggerable. The Q output is fed back to disable the trigger input during the triggered state (Logic Diagram). Figure 7 shows a positive triggered configuration; a similar configuration can be made for negative triggering.


FIGURE 7 —

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

ISSUE R

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
DIMENSION L TO CENTER OF LEAD WHEN FOOMED DRAWLES

DIMENSION LTO CENTER OF LEAD WHEN FORMED PARALLEL.
DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Е	0.050	BSC	1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54	BSC	
Н	0.008	0.015	0.21	0.38	
κ	0.125	0.170	3.18	4.31	
Г	0.300 BSC		7.62	BSC	
Μ	0 °	15 °	0 °	15°	
Ν	0.020	0.040	0.51	1.01	

PLASTIC DIP PACKAGE CASE 648-08 -A-<u>ሳ ስ ስ ስ</u> в $\Box \Box$ ι, հ - C S -T- SEATING PLANE H

16

0 L

G

D 16 PL

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIN	IETERS		
DIM	MIN	MIN MAX		MAX		
Α	0.740	0.770	18.80	19.55		
В	0.250	0.270	6.35	6.85		
C	0.145	0.175	3.69	4.44		
D	0.015	0.021	0.39	0.53		
F	0.040	0.70	1.02	1.77		
G	0.100	BSC	2.54 BSC			
Н	0.050	BSC	1.27	BSC		
J	0.008	0.015	0.21	0.38		
K	0.110	0.130	2.80	3.30		
L	0.295	0.305	7.50	7.74		
М	0°	10 °	0 °	10 °		
S	0.020	0.040	0.51	1.01		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

OR NEW DESIGN

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.